Context

Chronic kidney disease (CKD)
- Renal function decrease: decrease of glomerular filtration rate (GFR)
- Often detected quite late & irreversible complications
- 1.7 to 2.5 million patients
- Heavy and invasive treatment (diagnosis, graft)

Objective
Identification of the metabolomic profiles predictive of CKD stages through an exhaustive local data mining approach with rule generation.

Materials and Methods

Dataset: 10 subjects
- Features: urine 1H NMR spectra, Target: CKD stages, 2 modalities
- Features: signal acquisition and pre-processing

HyperCube
- High dimension 32X points
- Complex mixture of metabolites
- Overlaps of some peaks
- eGFR ≥ 60 ml/min/1.73 m²
 - Target: CKD Stages
 - low to mild CKD
 - 24 subjects
- eGFR < 60 ml/min/1.73 m²
 - moderate to established CKD
 - 86 subjects

Supervised analysis
1. **Dimension reduction**
 - Equidistant binning of 0.04 ppm (AUC)
 - Discretization of the features with a 10 bin quantization

2. **Feature selection**
 - Data mining
 - Pearson's chi-squared test (χ^2)
 - Statistical test of goodness of fit and independence of the observed distribution of 2 discrete variables with respect to a theoretical distribution.
 - $\chi^2 = \sum \frac{(O - E)^2}{E}$
 - O and E are respectively the observed and expected frequencies.
 - r and c are resp. nb of rows and columns in the contingency table.

 - Supervised Mutual Information (nMI)
 - Measures of all types of features' mutual dependence.
 - $MI = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$

 - Rule mining
 - 10 rules: (Feature condition)
 - (Target modality)
 - (Range of values)

Results

Feature selection

Data mining
- Supervised feature selection.
- Features (blue points) according to:
 - χ^2 test: $-\log(p$-value)$) \geq X^2$
 - $nMI \geq \min[nMI(x,y)] = 0.14$
- Number of features selected = 36

Rule mining
- Relevant generated 10 rules were based on 10 out of the 36 previously selected features.

Predictive model
- Classification score: 0.79
 - (p-value: 0.001)
- The 10 features selected with our method (except the bucket 2.48) were in the first 16 features obtained with the Orthogonal Partial Least Square (O-PLS) model [2].
- Our method provided information on the distribution of the target modalities with respect to range of spectral values (buckets' AUC).
- Metabolomic profiles of the CKD stages:
 - GFRx_1 => [citrate]x_1 (metabolic disorders) ;
 - dimethyl sulfonex_2 (clearance) ;
 - trigonellinex_3 (protection against oxidative stress and apoptosis) ...

Conclusion

- Our local data mining approach with rule generation combined with logistic regression supports the discriminant metabolites obtained in a previous study [2].
- It also provides information on the distribution of the CKD stages with respect to range of spectral values.

Perspectives

- Include multi-source dataset
- Increase the number of subjects
- Refine the GFR classes
- Make a predictive model on subgroups defined by rules (i.e. local predictive model)

References